Subregional analysis of striatum iron in Parkinson’s disease and rapid eye movement sleep behaviour disorder

Abstract

The loss of dopamine in the striatum underlies motor symptoms of Parkinson’s disease (PD). Rapid eye movement sleep behaviour disorder (RBD) is considered prodromal PD and has shown similar neural changes in the striatum. Alterations in brain iron suggest neurodegeneration; however, the literature on striatal iron has been inconsistent in PD and scant in RBD. Toward clarifying pathophysiological changes in PD and RBD, and uncovering possible biomarkers, we imaged 26 early-stage PD patients, 16 RBD patients, and 39 age-matched healthy controls with 3 T MRI. We compared mean susceptibility using quantitative susceptibility mapping (QSM) in the standard striatum (caudate, putamen, and nucleus accumbens) and tractography-parcellated striatum. Diffusion MRI permitted parcellation of the striatum into seven subregions based on the cortical areas of maximal connectivity from the Tziortzi atlas. No significant differences in mean susceptibility were found in the standard striatum anatomy. For the parcellated striatum, the caudal motor subregion, the most affected region in PD, showed lower iron levels compared to healthy controls. Receiver operating characteristic curves using mean susceptibility in the caudal motor striatum showed a good diagnostic accuracy of 0.80 when classifying early-stage PD from healthy controls. This study highlights that tractography-based parcellation of the striatum could enhance sensitivity to changes in iron levels, which have not been consistent in the PD literature. The decreased caudal motor striatum iron was sufficiently sensitive to PD, but not RBD. QSM in the striatum could contribute to development of a multivariate or multimodal biomarker of early-stage PD, but further work in larger datasets is needed to confirm its utility in prodromal groups.

Publication
NeuroImage: Clinical